对于函数,若存在实数对,使得等式对定义域中的任意都成立,则称函数是“型函数”.
(1)若是“型函数”,且,求满足条件的实数对;
(2)已知函数.函数是“型函数”,对应的实数对为,当时,.若对任意时,都存在,使得,求实数的值.
如图,已知菱形所在平面与矩形所在平面相互垂直,且,是线段的中点,是线段上的动点.
(1)与所成的角是否为定值,试说明理由;
(2)若二面角为60°,求四面体的体积.
某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入.政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益、养鸡的收益与投入(单位:万元)满足.设甲合作社的投入为(单位:万元),两个合作社的总收益为(单位:万元).
(1)若两个合作社的投入相等,求总收益;
(2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大?
三角形的三个顶点是.
(1)求边上的中线所在直线的方程;
(2)求边上的高所在直线的方程.
求下列各式的值.
(1);
(2).
如图,在正方体中,是的中点.
(1)求证:平面;
(2)求证:平面平面.(只需在下面横线上填写给出的如下结论的序号:①平面,②平面,③,④,⑤)
证明:(1)设,连接.因为底面是正方形,所以为的中点,又是的中点,所以_________.因为平面,____________,所以平面.
(2)因为平面平面,所以___________,因为底面是正方形,所以_______,又因为平面平面,所以_________.又平面,所以平面平面.