已知为椭圆上的动点,轴于,为的中点,设点的轨迹为.
(1)求曲线的方程;
(2)若点,直线与曲线交于,两点,与椭圆交于,两点,问是否存在与无关的实数,使得成立,若存在求出的值;若不存在请说明理由(,,,分别表示直线,,,的斜率).
已知函数.
(1)求函数的极值;
(2)若,证明:.
2017年3月18日,国务院办公厅发布了《生活垃圾分类制度实施方案》,我市环保部门组织了一次垃圾分类知识的网络问卷调查,每位市民都可以通过电脑网络或手机微信平台参与,但仅有一次参加机会工作人员通过随机抽样,得到参与网络问卷调查的100人的得分(满分按100分计)数据,统计结果如下表.
组别 | ||||||
女 | 2 | 4 | 4 | 15 | 21 | 9 |
男 | 1 | 4 | 10 | 10 | 12 | 8 |
(1)环保部门规定:问卷得分不低于70分的市民被称为“环保关注者”.请列出列联表,并判断能否在犯错误的概率不超过的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.现在从本次调查的“环保达人”中利用分层抽样的方法随机抽取5名市民参与环保知识问答,再从这5名市民中抽取2人参与座谈会,求抽取的2名市民中,既有男“环保达人”又有女“环保达人”的概率.
附表及公式:,.
已知数列满足,.
(1)求证:为等比数列,并求数列的通项公式;
(2)若数列是首项为1,公差为3的等差数列,求数列的前项和.
如图,在四棱锥中,平面,是平行四边形,,、交于点,是上一点.
(1)求证:;
(2)已知,若为的中点,求三棱锥的体积.
已知函数的图像上存在两点关于轴对称,则实数的取值范围是______.