(1)见解析;(2)
【解析】
试题(1)要证线面垂直,就是要证线线垂直,题中由平面,可知,再分析已知由得,这样与垂直的两条直线都已找到,从而可得线面垂直;(2)求二面角的大小,可心根据定义作出二面角的平面角,求出这个平面角的大小,本题中,由于,平面,因此两两垂直,可以他们为轴建立空间直角坐标系,写出图中各点的坐标,求出平面和平面的法向量,向量的夹角与二面角相等或互补,由此可得结论.
试题解析:(1)证明:由PC平面ABC,DE平面ABC,故PCDE
由CE=2,CD=DE=得CDE为等腰直角三角形,故CDDE
由PCCD=C,DE垂直于平面PCD内两条相交直线,故DE平面PCD
(2)【解析】
由(1)知,CDE为等腰直角三角形,DCE=,如(19)图,过点D作DF垂直CE于F,易知DF=FC=EF=1,又已知EB=1,
故FB=2.
由ACB=得DFAC,,故AC=DF=.
以C为坐标原点,分别以的方程为x轴,y轴,z轴的正方向建立空间直角坐标系,则C(0,0,0,),P(0,0,3),A(,0,0),E(0,2,0),D(1,1,0),
设平面的法向量,
由,,
得.
由(1)可知DE平面PCD,故平面PCD的法向量可取为,即.
从而法向量,的夹角的余弦值为,
故所求二面角A-PD-C的余弦值为.