如图,在四棱锥中,平面,是平行四边形,,交于点是上一点.
(1)求证:;
(2)已知二面角的余弦值为,若为的中点,求与平面所成角的正弦值.
的内角所对的边分别为且满足.
(1)求的值;
(2)若角,,求的周长.
已知等差数列中,首项,公差,若成等比数列,且,,,则数列的通项公式是______.
现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.
关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请名同学,每人随机写下一个都小于的正实数对,再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数m来估计的值.假如统计结果是那么可以估计______.
设,,是单位向量,,,,的夹角为,则______.