在直角坐标系xOy中,直线l的参数方程为(t为参数,a∈R),以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ
(1)求直线l的普通方程及曲线C的直角坐标方程;
(2)若直线l过点P(1,1)且与曲线C交于AB两点,求|PA|+|PB|
已知a≤8.函数f(x)=a1nx﹣x2+5,g(x)=2x+
(1)若f(x)的极大值为5,求a的值
(2)若关于x的不等式f(x)≤g(x)在区间[1,+∞)上恒成立,求a的取值范围,(1n2≈0.7)
己知A,B分别为椭圆C:(a>b>0)的左右顶点,P为椭圆C上异于A,B的任意一点,O为坐标原点,•=﹣4,△PAB的面积的最大值为.
(1)求椭圆C的方程;
(2)若椭圆C上存在两点M,N,分别满足OM∥PA,ON∥PB,求|OM|•|ON|的最大值.
在如图所示的几何体中,侧面ABCD为矩形,侧面DEFG为平行四边形,AB=1,AD=2,AG∥BF,AB⊥BF,AG=3,BF=5,二面角D﹣AB﹣F的大小为60°.
(1)证明,平面CDE⊥平面ADG
(2)求直线BE与平面ABCD所成角的大小
某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:cm).经统计,高度均在区间[20,50]内,将其按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50]分成6组,制成如图所示的频率分布直方图,其中高度不低于40cm的树苗为优质树苗.
(1)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下2×2列联表所示,将列联表补充完整,并根据列联表判断是否有99.9%的把握认为优质树苗与地区有关?
(2)用样本估计总体的方式,从这批树苗中随机抽取4棵,期中优质树苗的棵数记为X,求X的分布列和数学期望.
| 甲地区 | 乙地区 | 合计 |
优质树苗 | 5 |
|
|
非优质树苗 |
| 25 |
|
合计 |
|
|
|
附:K2=,其中n=a+b+c+d
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
在△ABC中,角A,B,C的对边分别为a,b,c,c=acosB+2bsin2
(1)求A
(2)若b=4,AC边上的中线长为,求a.