满分5 > 高中数学试题 >

在△ABC中,角A,B,C的对边分别为a,b,c,△ABC的面积为S,且2S=(...

ABC中,角A,B,C的对边分别为a,b,c,ABC的面积为S,且2S=(a+b2c2,则tanC=(   

A. B. C. D.

 

C 【解析】 利用面积公式,以及余弦定理对已知条件进行转化,再利用同角三角函数关系,将正余弦转化为正切,解方程即可求得. △ABC中,∵S△ABC,由余弦定理:c2=a2+b2﹣2abcosC, 且 2S=(a+b)2﹣c2,∴absinC=(a+b)2﹣(a2+b2﹣2abcosC), 整理得sinC﹣2cosC=2,∴(sinC﹣2cosC)2=4. ∴4,化简可得 3tan2C+4tanC=0. ∵C∈(0,180°),∴tanC, 故选:C.
复制答案
考点分析:
相关试题推荐

已知一个项数为偶数的等比数列,所有项之和为所有偶数项之和的4倍,前3项之积为64,则    .

A.11 B.12 C.13 D.14

 

查看答案

设等差数列的前项和为,当取最大值时,的值为( )

A. B. C. D.

 

查看答案

将函数的图像先向右平移个单位,再将所得的图像上每个点的横坐标变为原来的倍,得到的图像,则的可能取值为(   )

A. B. C. D.

 

查看答案

已知定义在上的可导函数是偶函数,且满足 ,则不等式的解集为(    .

A. B.

C. D.

 

查看答案

A. B. C. D.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.