如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.
(1)若M为PA中点,求证:AC∥平面MDE;
(2)求直线PE与平面PBC所成角的正弦值.
(3)在PC上是否存在一点Q,使得平面QAD与平面PBC所成锐二面角的大小为.
如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(1)求证:AB⊥DE;
(2)若点F为BE的中点,求直线AF与平面ADE所成角的正弦值.
已知点P在曲线x2+y2=1上运动,过点P作x轴的垂线,垂足为Q,动点M满足.
(1)求动点M的轨迹方程;
(2)点A、B在直线x﹣y﹣4=0上,且AB=4,求△MAB的面积的最大值.
AB是圆O的直径,点C是圆O上异于A、B的动点,过动点C的直线VC垂直于圆O所在平面,D,E分别是VA,VC的中点.
(1)判断直线DE与平面VBC的位置关系,并说明理由;
(2)当△VAB为边长为的正三角形时,求四面体V﹣DEB的体积.
已知△ABC的三边BC,CA,AB的中点分别是D(5,3),E(4,2),F(1,1).
(1)求△ABC的边AB所在直线的方程及点A的坐标;
(2)求△ABC的外接圆的方程.
设不等式组表示的平面区域为D,若指数函数y= 的图像上存在区域D上的点,则实数a的取值范围是______.