AB是圆O的直径,点C是圆O上异于A、B的动点,过动点C的直线VC垂直于圆O所在平面,D,E分别是VA,VC的中点.
(1)判断直线DE与平面VBC的位置关系,并说明理由;
(2)当△VAB为边长为的正三角形时,求四面体V﹣DEB的体积.
已知△ABC的三边BC,CA,AB的中点分别是D(5,3),E(4,2),F(1,1).
(1)求△ABC的边AB所在直线的方程及点A的坐标;
(2)求△ABC的外接圆的方程.
已知命题p:任意x∈[1,2],x2-a≥0,命题q:存在x∈R,x2+2ax+2-a=0.若命题p与q都是真命题,求实数a的取值范围.
设不等式组表示的平面区域为D,若指数函数y= 的图像上存在区域D上的点,则实数a的取值范围是______.
如图,在棱长为2的正方体中,点P在正方体的对角线AB上,点Q在正方体的棱CD上,若P为动点,Q为动点,则PQ的最小值为_____.
双曲线的两条渐近线互相垂直,那么它的离心率为_____.