[选修4—4:坐标系与参数方程]
已知曲线的参数方程为(为参数),以原点为极点,以轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)射线:与曲线交于点,射线:与曲线交于点,求的取值范围.
已知函数, 在点处的切线与轴平行.
(1)求的单调区间;
(2)若存在,当时,恒有成立,求的取值范围.
设椭圆C:的左顶点为A,上顶点为B,已知直线AB的斜率为,.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于不同的两点M、N,且点O在以MN为直径的圆外(其中O为坐标原点),求的取值范围.
如图,已知四棱锥P-ABCD的底面是边长为的菱形,,点E是棱BC的中点,,点P在平面ABCD的射影为O,F为棱PA上一点.
(1)求证:平面PED平面BCF;
(2)若BF//平面PDE,PO=2,求四棱锥F-ABED的体积.
《汉字听写大会》不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组,第2组,…,第6组,如图是按上述分组方法得到的频率分布直方图.
(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;
(2)试估计该市市民正确书写汉字的个数的众数与中位数;
(3)已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市同组成弘扬传统文化宣传队,求至少有1名女性市民的概率.
在中,角A,B,C对边分别为,,,且是与的等差中项.
(1)求角A;
(2)若,且的外接圆半径为1,求的面积.