设
.
(1)求
的单调区间;
(2)讨论
零点的个数;
(3)当
时,设
恒成立,求实数a的取值范围.
已知椭圆C:
(a>b>0)的左.右顶点分别为A,B,离心率为
,点P
为椭圆上一点.

(1) 求椭圆C的标准方程;
(2) 如图,过点C(0,1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1=2k2,求直线l斜率的值.
某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(
元)试销l天,得到如表单价
(元)与销量
(册)数据:
单价 | 18 | 19 | 20 | 21 | 22 |
销量 | 61 | 56 | 50 | 48 | 45 |
(l)根据表中数据,请建立
关于
的回归直线方程:
(2)预计今后的销售中,销量
(册)与单价
(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?
附:
,
,
,
.
某校从高一年级学生中随机抽取
名学生,将他们的期中考试数学成绩(满分
分,成绩均为不低于
分的整数)分成六段:
,
,…,
后得到如图的频率分布直方图.

(1)求图中实数
的值;
(2)若从数学成绩在
与
两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于
的概率.
如图,在直三棱柱
中,
,
,
,点
是
的中点.

(1)求异面直线
与
所成角的余弦值;
(2)求平面
与平面
所成的二面角(是指不超过
的角)的余弦值.
设函数
,
,若函数
的极小值不大于
,则
的取值范围是__________.
