满分5 > 高中数学试题 >

东莞的轻轨给市民出行带来了很大的方便,越来越多的市民选择乘坐轻轨出行,很多市民都...

东莞的轻轨给市民出行带来了很大的方便,越来越多的市民选择乘坐轻轨出行,很多市民都会开汽车到离家最近的轻轨站,将车停放在轻轨站停车场,然后进站乘轻轨出行,这给轻轨站停车场带来很大的压力.某轻轨站停车场为了解决这个问题,决定对机动车停车施行收费制度,收费标准如下:4小时内(含4小时)每辆每次收费5元;超过4小时不超过6小时,每增加一小时收费增加3元;超过6小时不超过8小时,每增加一小时收费增加4元,超过8小时至24小时内(含24小时)收费30元;超过24小时,按前述标准重新计费.上述标准不足一小时的按一小时计费.为了调查该停车场一天的收费情况,现统计1000辆车的停留时间(假设每辆车一天内在该停车场仅停车一次),得到下面的频数分布表:

(小时)

频数(车次)

100

100

200

200

350

50

 

以车辆在停车场停留时间位于各区间的频率代替车辆在停车场停留时间位于各区间的概率.

1)现在用分层抽样的方法从上面1000辆车中抽取了100辆车进行进一步深入调研,记录并统计了停车时长与司机性别的列联表:

 

合计

不超过6小时

 

30

 

6小时以上

20

 

 

合计

 

 

100

 

 

完成上述列联表,并判断能否有90%的把握认为“停车是否超过6小时”与性别有关?

2)(i表示某辆车一天之内(含一天)在该停车场停车一次所交费用,求的概率分布列及期望

ii)现随机抽取该停车场内停放的3辆车,表示3辆车中停车费用大于的车辆数,求的概率.

参考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

 

 

 

 

(1)列联表见解析,没有超过90%的把握认为“停车是否超过6小时”与性别有关;(2)(i)分布列见解析,;(ii) 【解析】 (1)先根据频数分布表填写列联表,再将数据代入公式求解即可; (2)(i)的可取值为5,8,11,15,19,30,根据频数分布表分别求得概率,进而得到分布列,并求得期望;(ii)先求得,则,进而求得概率即可 (1)由题,不超过6小时的频率为,则100辆车中有40辆不超过6小时,60辆超过6小时, 则列联表如下:   男 女 合计 不超过6小时 10 30 40 6小时以上 20 40 60 合计 30 70 100 根据上表数据代入公式可得 所以没有超过90%的把握认为“停车是否超过6小时”与性别有关 (2)(i)由题意知:的可取值为5,8,11,15,19,30,则 所以的分布列为: 5 8 11 15 19 30 ∴ (ii)由题意得,所以, 所以
复制答案
考点分析:
相关试题推荐

冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%,现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);

2)现在要从年龄较大的第45组中用分层抽样的方法抽取8人,再从这8人中随机抽取3人进行问卷调查,求第4组恰好抽到2人的概率;

3)若从所有参与调查的人(人数很多)中任意选出3人,设其中关注交通道路安全的人数为随机变量X,求X的分布列与数学期望.

 

查看答案

某市一中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?

2)将同学乙的成绩的频率分布直方图补充完整;

3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为,求的分布列及数学期望.

 

查看答案

某饼屋进行为期天的五周年店庆活动,现策划两项有奖促销活动,活动一:店庆期间每位顾客一次性消费满元,可得元代金券一张;活动二:活动期间每位顾客每天有一次机会获得一个一元或两元红包.根据前一年该店的销售情况,统计了位顾客一次性消费的金额数(元),频数分布表如下图所示:

一次性消费金额数

人数

 

以这位顾客一次消费金额数的频率分布代替每位顾客一次消费金额数的概率分布.

1)预计该店每天的客流量为人次,求这次店庆期间,商家每天送出代金券金额数的期望;

2)假设顾客获得一元或两元红包的可能性相等,商家在店庆活动结束后会公布幸运数字,连续天参加返红包的顾客,如果红包金额总数与幸运数字一致,则可再获得元的店庆幸运红包一个.若公布的幸运数字是,求店庆期间一位连续天消费的顾客获得红包金额总数的期望.

 

查看答案

某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:,整理得到如下频率分布直方图:

1)若该样本中男生有55人,试估计该学校高三年级女生总人数;

2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;

3)若规定分数在为“良好”,为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X,求X的分布列和数学期望.

 

查看答案

河北省高考综合改革从2018年秋季入学的高一年级学生开始实施,新高考将实行“3+1+2”模式,其中3表示语文、数学、外语三科必选,1表示从物理、历史两科中选择一科,2表示从化学、生物、政治、地理四科中选择两科.某校2018级入学的高一学生选科情况如下表:

选科组合

物化生

物化政

物化地

物生政

物生地

物政地

史政地

史政化

史生政

史地化

史地生

史化生

合计

130

45

55

30

25

15

30

10

40

10

15

20

425

100

45

50

35

35

35

40

20

55

15

25

20

475

合计

230

90

105

65

60

50

70

30

95

25

40

40

900

 

 

1)完成下面的列联表,并判断是否在犯错误概率不超过0.01的前提下,认为“选择物理与学生的性别有关”?

2)以频率估计概率,从该校2018级高一学生中随机抽取3名同学,设这三名同学中选择物理的人数为,求的分布列和数学期望.

 

选择物理

不选择物理

合计

 

 

425

 

 

475

合计

 

 

900

 

 

附表及公式:

0.150

0.100

0.050

0.010

2.072

2.706

3.841

6.635

 

 

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.