一个几何体是由若干个边长为的正方体组成的,其主视图和左视图如图所示,且使得组成几何体的正方体个数最多,则该几何体的表面积为( )
A. B. C. D.
某几何体的三视图如图所示,则该几何体的体积是( )
A. B. C. D.
已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则( )
A.PA,PB,PC两两垂直 B.三棱锥P-ABC的体积为
C. D.三棱锥P-ABC的侧面积为
设是两条不同的直线,是三个不同的平面( )
①则;
②,则;
③,则;
④若,则.
上述四个命题中,正确的个数为
A.1 B.2 C.3 D.4
为了鼓励职员工作热情,某公司对每位职员一年来的工作业绩按月进行考评打分;年终按照职员的月平均值评选公司最佳职员并给予相应奖励.已知职员一年来的工作业绩分数的茎叶图如图所示:
(1)根据职员的业绩茎叶图求出他这一年的工作业绩的中位数和平均数;
(2)若记职员的工作业绩的月平均数为.
①已知该公司还有6位职员的业绩在100以上,分别是,,,,,,在这6人的业绩里随机抽取2个数据,求恰有1个数据满足(其中)的概率;
②由于职员的业绩高,被公司评为年度最佳职员,在公司年会上通过抽奖形式领取奖金.公司准备了9张卡片,其中有1张卡片上标注奖金为6千元,4张卡片的奖金为4千元,另外4张的奖金为2千元.规则是:获奖职员需要从9张卡片中随机抽出3张,这3张卡片上的金额数之和就是该职员所得奖金.记职员获得的奖金为(千元),求的分布列和期望.
东莞的轻轨给市民出行带来了很大的方便,越来越多的市民选择乘坐轻轨出行,很多市民都会开汽车到离家最近的轻轨站,将车停放在轻轨站停车场,然后进站乘轻轨出行,这给轻轨站停车场带来很大的压力.某轻轨站停车场为了解决这个问题,决定对机动车停车施行收费制度,收费标准如下:4小时内(含4小时)每辆每次收费5元;超过4小时不超过6小时,每增加一小时收费增加3元;超过6小时不超过8小时,每增加一小时收费增加4元,超过8小时至24小时内(含24小时)收费30元;超过24小时,按前述标准重新计费.上述标准不足一小时的按一小时计费.为了调查该停车场一天的收费情况,现统计1000辆车的停留时间(假设每辆车一天内在该停车场仅停车一次),得到下面的频数分布表:
(小时) | ||||||
频数(车次) | 100 | 100 | 200 | 200 | 350 | 50 |
以车辆在停车场停留时间位于各区间的频率代替车辆在停车场停留时间位于各区间的概率.
(1)现在用分层抽样的方法从上面1000辆车中抽取了100辆车进行进一步深入调研,记录并统计了停车时长与司机性别的列联表:
| 男 | 女 | 合计 |
不超过6小时 |
| 30 |
|
6小时以上 | 20 |
|
|
合计 |
|
| 100 |
完成上述列联表,并判断能否有90%的把握认为“停车是否超过6小时”与性别有关?
(2)(i)表示某辆车一天之内(含一天)在该停车场停车一次所交费用,求的概率分布列及期望;
(ii)现随机抽取该停车场内停放的3辆车,表示3辆车中停车费用大于的车辆数,求的概率.
参考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |