满分5 > 高中数学试题 >

若直线始终平分圆:的周长,则的最小值为( ) A.1 B.9 C.10 D.

若直线始终平分圆:的周长,则的最小值为(   

A.1 B.9 C.10 D.

 

B 【解析】 由题意得,直线过圆心,即,,利用基本不等式求出其最小值. 【解析】 由题意,直线始终平分圆,所以直线过圆心, 即,所以,. ,当且仅当时,等号成立, 故选:.
复制答案
考点分析:
相关试题推荐

上到直线的距离为的点共有(   

A.1 B.2 C.3 D.4

 

查看答案

直线与圆位置关系是(   

A.相离 B.相切 C.相交且过圆心 D.相交但不过圆心

 

查看答案

一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间(分钟)和答对人数的统计表格如下:

时间(分钟)

10

20

30

40

50

60

70

80

90

100

答对人数

98

70

52

36

30

20

15

11

5

5

1.99

1.85

1.72

1.56

1.48

1.30

1.18

1.04

0.7

0.7

 

时间与答对人数的散点图如图:

附:,对于一组数据……,其回归直线的斜率和截距的最小二乘估计分别为:.请根据表格数据回答下列问题:

1)根据散点图判断,,哪个更适宣作为线性回归类型?(给出判断即可,不必说明理由)

2)根据(1)的判断结果,建立的回归方程;(数据保留3位有效数字)

3)根据(2)请估算要想记住的内容,至多间隔多少分钟重新记忆一遍.(参考数据:

 

查看答案

某校高三实验班的60名学生期中考试的语文、数学成绩都在内,其中语文成绩分组区间是:.其成绩的频率分布直方图如图所示,这60名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示:

分组区间

 

语文人数

 

24

 

 

3

数学人数

 

12

 

 

4

 

 

1)求图中的值及数学成绩在的人数;

2)语文成绩在3名学生均是女生,数学成绩在4名学生均是男生,现从这7名学生中随机选取4名学生,事件为:“其中男生人数不少于女生人数”,求事件发生的概率;

3)若从数学成绩在的学生中随机选取2名学生,且这2名学生中数学成绩在的人数为,求的分布列和数学期望.

 

查看答案

某购物商场分别推出支付宝和微信扫码支付购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.现统计了活动刚推出一周内每天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次,统计数据如下表所示:

 

1)根据散点图判断,在推广期内,扫码支付的人次关于活动推出天数的回归方程适合用来表示,求出该回归方程,并预测活动推出第天使用扫码支付的人次;

2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:

支付方式

现金

会员卡

扫码

比例

 

商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.现有一名顾客购买了元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少?

参考数据:设

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.