为弘扬中华民族优秀传统文化,树立正确的价值导向,落实立德树人根本任务,某市组织30000名高中学生进行古典诗词知识测试,根据男女学生人数比例,使用分层抽样的方法从中随机抽取100名学生,记录他们的分数,整理所得频率分布直方图如图:
(Ⅰ)规定成绩不低于60分为及格,不低于85分为优秀,试估计此次测试的及格率及优秀率;
(Ⅱ)试估计此次测试学生成绩的中位数;
(Ⅲ)已知样本中有的男生分数不低于80分,且样本中分数不低于80分的男女生人数相等,试估计参加本次测试30000名高中生中男生和女生的人数.
某学校为了了解高一年级学生学习数学的状态,从期中考试成绩中随机抽取50名学生的数学成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)由频率分布直方图,估计这50名学生数学成绩的中位数和平均数(保留到0.01);
(2)该校高一年级共有1000名学生,若本次考试成绩90分以上(含90分)为“优秀”等次,则根据频率分布直方图估计该校高一学生数学成绩达到“优秀”等次的人数.
某省在2017年启动了“3+3”高考模式.所谓“3+3”高考模式,就是语文、数学、外语(简称语、数、外)为高考必考科目,从物理、化学、生物、政治、历史、地理(简称理、化、生、政、史、地)六门学科中任选三门作为选考科目.该省某中学2017级高一新生共有990人,学籍号的末四位数从0001到0990.
(1)现从高一学生中抽样调查110名学生的选考情况,问:采用什么样的抽样方法较为恰当?(只写出结论,不需要说明理由)
(2)据某教育机构统计,学生所选三门学科在将来报考专业时受限制的百分比是不同的.该机构统计了受限百分比较小的十二种选择的百分比值,制作出如下条形图.
设以上条形图中受限百分比的均值为,标准差为.如果一个学生所选三门学科专业受限百分比在区间内,我们称该选择为“恰当选择”.该校李明同学选择了化学,然后从余下五门选考科目中任选两门.问李明的选择为“恰当选择"的概率是多少?(均值,标准差均精确到0.1)
(参考公式和数据:,)
随着我国人民生活水平的提高,居民家庭教育投资观念不断加强,从整个社会到单个居民家庭都非常重视教育投入.为了了解单个居民家庭教育投入占家庭收入的百分比,现对某小区户人家进行了调查,得到的频率分布直方图如下:
(1)求教育投入占家庭收入的百分比在的户数;
(2)估计教育投入占家庭收入的百分比的平均数.
某电视台举行一个比赛类型的娱乐节目,A、B两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将A队第六位选手的成绩没有给出,并且告知大家B队的平均分比A队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.
(1)根据茎叶图中的数据,求出A队第六位选手的成绩;
(2)主持人从A队所有选手成绩中随机抽取2个,求至少有一个为“晋级”的概率;
一研学实践活动小组利用课余时间,对某公司1月份至5月份销售某种产品的销售量及销售单价进行了调查,月销售单价(单位:元)和月销售量(单位:百件)之间的一组数据如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 |
月销售单价(元) | 1.6 | 1.8 | 2 | 2.2 | 2.4 |
月销售量(百件) | 10 | 8 | 7 | 6 | 4 |
(1)根据1至5月份的数据,求出关于的回归直线方程;
(2)预计在今后的销售中,月销售量与月销售单价仍然服从(1)中的关系,若该种产品的成本是1元/件,那么该产品的月销售单价应定为多少元才能获得最大月利润?(注:利润=销售收入-成本)
(回归直线方程,其中.参考数据:,)