在平面直角坐标系中,,是曲线段:(是参数,)的左、右端点,是上异于,的动点,过点作直线的垂线,垂足为.
(1)建立适当的极坐标系,写出点轨迹的极坐标方程;
(2)求的最大值.
已知椭圆:的一个焦点为,离心率为.
(1)求的标准方程;
(2)若动点为外一点,且到的两条切线相互垂直,求的轨迹的方程;
(3)设的另一个焦点为,过上一点的切线与(2)所求轨迹交于点,,求证:.
已知函数,为的导函数.
(1)证明:在定义域上存在唯一的极大值点;
(2)若存在,使,证明:.
如图,楔形几何体由一个三棱柱截去部分后所得,底面侧面,,楔面是边长为2的正三角形,点在侧面的射影是矩形的中心,点在上,且
(1)证明:平面;
(2)求楔面与侧面所成二面角的余弦值.
2019年9月24日国家统计局在庆祝中华人民共和国成立70周年活动新闻中心举办新闻发布会指出,1952年~2018年,我国GDP查679.1亿元跃升至90.03万亿元,实际增长174倍;人均GDP从119元提高到6.46万元,实际增长70倍.全国各族人民,砥砺奋进,顽强拼搏,实现了经济社会的跨越式发展.如图是全国2010年至2018年GDP总量(万亿元)的折线图.
注:年份代码1~9分别对应年份2010~2018.
(1)由折线图看出,可用线性回归模型拟合与年份代码的关系,请用相关系数加以说明;
(2)建立关于的回归方程(系数精确到0.01),预测2019年全国GDP的总量.
附注:参考数据:,,,.
参考公式:相关系数;
回归方程中斜率和截距的最小二乘法估计公式分别为,
已知的面积为,,在边上,,内角,,的对边分别为,,,当最大时,求,,