命题“任意,”的否定是( )
A.对任意, B.对任意
C.不存在 D.存在
命题“若则”的逆否命题是( )
A.若则 B.若则 C.若则 D.若则
如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥(是圆的直径).规划在公路上选两个点,并修建两段直线型道路.规划要求:线段上的所有点到点的距离均不小于圆的半径.已知点到直线的距离分别为和(为垂足),测得,,(单位:百米).
(1)若道路与桥垂直,求道路的长;
(2)在规划要求下,和中能否有一个点选在处?并说明理由.
西北某省会城市计划新修一座城市运动公园,设计平面如图所示:其为五边形,其中三角形区域为球类活动场所;四边形为文艺活动场所,,为运动小道(不考虑宽度),,千米.
(1)求小道的长度;
(2)求球类活动场所的面积最大值.
如图,已知扇形的圆心角∠AOB=,半径为,若点C是上的一动点(不与点A,B重合).
(1)若弦,求的长;
(2)求四边形OACB面积的最大值.
如图所示, 是海面上一条南北方向的海防警戒线,在 上点 处有一个水声监测点,另两个监测点 分别在 的正东方向 处和 处.某时刻,监测点 收到发自目标 的一个声波, 后监测点 后监测点 相继收到这一信号,在当时的气象条件下,声波在水中的传播速度是 .
(1)设 到 的距离为 ,用 分别表示 到 的距离,并求 的值;
(2)求目标 的海防警戒线 的距离(精确到 ).