在直角坐标系中,直线(为参数)与曲线(为参数)相交于不同的两点,.
(1)当时,求直线与曲线的普通方程;
(2)若,其中,求直线的倾斜角.
设函数,,,.
(1)证明:;
(2)当时,不等式恒成立,求的取值范围.
设椭圆,过点的直线,分别交于不同的两点、,直线恒过点
(1)证明:直线,的斜率之和为定值;
(2)直线,分别与轴相交于,两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标,若不存在,请说明理由.
如图,在四棱柱中,底面是边长为2的菱形,且,,.
(1)证明:平面平面;
(2)求二面角的余弦值.
的内角,,的对边分别为,,,设.
(1)求;
(2)若的周长为8,求的面积的取值范围.
某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
消费次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收费比率 |
该公司注册的会员中没有消费超过次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:
消费次数 | 次 | 次 | 次 | 次 | 次 |
人数 |
假设汽车美容一次,公司成本为元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为元,求的分布列和数学期望.