设集合,,则等于( )
A. B.
C. D.
已知(,且).
(1)当(其中,且t为常数)时,是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由;
(2)当时,求满足不等式的实数x的取值范围.
设函数(,且)是定义域为R的奇函数.
(1)求t的值;
(2)若,求使不等式对一切恒成立的实数k的取值范围;
(3)若函数的图象过点,是否存在正数m(),使函数在上的最大值为0,若存在,求出m的值;若不存在,请说明理由.
2018年1月8日,中共中央、国务院隆重举行国家科学技术奖励大会,在科技界引发热烈反响,自主创新正成为引领经济社会发展的强劲动力.某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值y与这种新材料的含量x(单位:克)的关系为:当时,y是x的二次函数;当时,测得数据如下表(部分):
x(单位:克) | 0 | 1 | 2 | 9 | … |
y | 0 | 3 | … |
(1)求y关于x的函数关系式;
(2)当该产品中的新材料含量x为何值时,产品的性能指标值最大.
某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常.排气后,测得车库内的一氧化碳浓度为,继续排气,又测得浓度为,经检测知该地下车库一氧化碳浓度与排气时间存在函数关系:(,为常数)。
(1)求,的值;
(2)若地下车库中一氧化碳浓度不高于为正常,问至少排气多少分钟,这个地下车库中的一氧化碳含量才能达到正常状态?
已知函数(,,)的部分图象如下图所示.
(1)求的解析式;
(2)求函数在的单调减区间.