在直角坐标系中,直线的倾斜角是
A. B. C. D.
已知函数,.
(1)若命题:“,”是真命题,求的取值范围;
(2)若,,,,求的最小值;
(3)若,函数在区间上的最大值与最小值的差不超过,求的取值范围.
已知椭圆经过点,且离心率为.
(1)设过点的直线与椭圆相交于、两点,若的中点恰好为点,求该直线的方程;
(2)过右焦点的直线(与轴不重合)与椭圆交于两点,线段的垂直平分线交轴于点,求实数的取值范围.
某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售单价(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
销售量(件) | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根据1至5月份的数据,先求出关于的回归直线方程;6月份的数据作为检验数据.若由回归直线方程得到的预测数据与检验数据的误差不超过,则认为所得到的回归直线方程是理想的.试问所求得的回归直线方程是否理想?
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的回归关系,如果该种机器配件的成本是元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考数据:,.
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.
设双曲线,正项数列满足,对任意的,,都有是上的点.
(1)求数列的通项公式;
(2)记,是否存在正整数,使得与有相同的渐近线?如果有,求出的值;如果没有,请说明理由.
“中秋节”期间,高速公路车辆较多,某调查公司在一服务区从七座以下小型汽车中,按进服务区的先后每间隔辆就抽取一辆的抽样方法,抽取名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段:,,,,,后得到如图所示的频率分布直方图.
(1)求这辆小型汽车车速的众数和中位数的估计值;
(2)若从车速在内的车辆中任意抽取辆,求车速在内的车辆至少有一辆的概率.