满分5 > 高中数学试题 >

如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,, (Ⅰ)设分别...

如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面

(Ⅰ)设分别为的中点,求证:平面

(Ⅱ)求证:平面

(Ⅲ)求直线与平面所成角的正弦值.

 

(I)见解析;(II)见解析;(III). 【解析】 (I)连接,结合平行四边形的性质,以及三角形中位线的性质,得到,利用线面平行的判定定理证得结果; (II)取棱的中点,连接,依题意,得,结合面面垂直的性质以及线面垂直的性质得到,利用线面垂直的判定定理证得结果; (III)利用线面角的平面角的定义得到为直线与平面所成的角,放在直角三角形中求得结果. (I)证明:连接,易知,, 又由,故, 又因为平面,平面, 所以平面. (II)证明:取棱的中点,连接,依题意,得, 又因为平面平面,平面平面, 所以平面,又平面,故, 又已知,, 所以平面. (III)【解析】 连接,由(II)中平面, 可知为直线与平面所成的角. 因为为等边三角形,且为的中点, 所以,又, 在中,, 所以,直线与平面所成角的正弦值为.
复制答案
考点分析:
相关试题推荐

已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为

A. B. C. D.

 

查看答案

设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则(  )

A.  B.

C.  D.

 

查看答案

如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.

1)证明:MN∥平面C1DE

2)求点C到平面C1DE的距离.

 

查看答案

图1是由矩形和菱形组成的一个平面图形,其中,将其沿折起使得重合,连结,如图2.

(1)证明图2中的四点共面,且平面平面

(2)求图2中的四边形的面积.

 

查看答案

如图,在四棱锥中,平面ABCD,底部ABCD为菱形,ECD的中点.

(Ⅰ)求证:BD⊥平面PAC

(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE

(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.