如图,已知三棱柱的侧棱垂直于底面,,,点,分别为和的中点.
(1)若,求三棱柱的体积;
(2)证明:平面;
(3)请问当为何值时,平面,试证明你的结论.
已知不经过原点的直线在两坐标轴上的截距相等,且点在直线上.
(1)求直线的方程;
(2)过点作直线,若直线,与轴围成的三角形的面积为2,求直线的方程.
如图,是的直径,所在的平面,是圆上一点,,.
(1)求证:平面平面;
(2)求直线与平面所成角的正切值.
已知幂函数的图像过点.
(1)求函数的解析式;
(2)设函数在是单调函数,求实数的取值范围.
设集合,,求.
竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典著,其中记载有求“囷盖”的术:“置如其周,令相乘也,又以高乘之,三十六成一”.该术相当于给出圆锥的底面周长与高,计算其体积的近似公式为.该结论实际上是将圆锥体积公式中的圆周率取近似值得到的.则根据你所学知识,该公式中取的近似值为______.