已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(n∈N*)
(Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an;
(Ⅱ)求数列{n2an}的前n项和Tn;
(Ⅲ)对任意n∈N*,使得 恒成立,求实数λ的最小值.
在平面四边形中,已知,,.
(1)若,求的面积;
(2)若,,求的长.
2015年推出一种新型家用轿车,购买时费用为16.9万元,每年应交付保险费、养路费及汽油费共1.2万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元.
(I)设该辆轿车使用n年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为f(n),求f(n)的表达式;
(II)这种汽车使用多少报废最合算(即该车使用多少年,年平均费用最少)?
已知数列为等差数列,公差,且,.
(1)求数列的通项公式;
(2)令,求数列的前项和.
如图,正三棱柱的各棱长均为2,D为棱BC的中点.
(1)求该三棱柱的表面积;
(2)求异面直线AB与所成角的余弦值.
设锐角的内角,,的对边分别为,,,且
(1)求角的大小;
(2)若,求的面积.