满分5 > 高中数学试题 >

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点. (Ⅰ)证...

如图,直三棱柱ABC-A1B1C1中,D,E分别是ABBB1的中点.

)证明: BC1//平面A1CD;

)设AA1= AC=CB=2AB=2,求三棱锥CA1DE的体积.

 

(Ⅰ)见解析(Ⅱ) 【解析】 试题(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.进而求得S△A1DE的值,再根据三棱锥C-A1DE的体积为•S△A1DE•CD,运算求得结果 试题解析:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点, 连结DF,则BC1∥DF. 3分 因为DF⊂平面A1CD,BC1不包含于平面A1CD, 4分 所以BC1∥平面A1CD. 5分 (2)【解析】 因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1. 8分 由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D 10分 所以三菱锥C﹣A1DE的体积为:==1. 12分
复制答案
考点分析:
相关试题推荐

在长方体ABCD-A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是棱AB的中点.

(1)求异面直线AD1EC所成角的大小;

(2)《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,试问四面体D1CDE是否为鳖臑?并说明理由.

 

查看答案

中,角所对的边分别为.且满足.

1)求角的大小;

2)若,求的面积.

 

查看答案

已知复数,且为纯虚数.

(1)求复数

(2)若,求复数的模

 

查看答案

如图,渔船甲位于岛屿的南偏西60°方向的处,且与岛屿相距12千米,渔船乙以10千米/时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上.则渔船甲的速度为____________.

 

查看答案

已知底面边长为,侧棱长为的正四棱锥内接于球.若球在球内且与平面相切,则球的直径的最大值为__________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.