满分5 > 高中数学试题 >

已知函数(为自然对数的底数) (1)若曲线在点处的切线平行于轴,求的值; (2)...

已知函数为自然对数的底数)

1)若曲线在点处的切线平行于轴,求的值;

2)求函数的极值;

3)当时,若直线与曲线没有公共点,求的最大值.

 

(1)(2)当时,函数无极小值;当,在处取得极小值,无极大值(3)的最大值为 【解析】 (1)求出,由导数的几何意义,解方程即可;(2)解方程,注意分类讨论,以确定的符号,从而确定的单调性,得极大值或极小值(极值点多时,最好列表表示);(3)题意就是方程无实数解,即关于的方程在上没有实数解.一般是分类讨论,时,无实数解,时,方程变为,因此可通过求函数的值域来求得的范围. (1)由,得. 又曲线在点处的切线平行于轴, 得,即,解得. (2), ①当时,,为上的增函数, 所以函数无极值. ②当时,令,得,. ,;,. 所以在上单调递减,在上单调递增, 故在处取得极小值,且极小值为,无极大值. 综上,当时,函数无极小值 当,在处取得极小值,无极大值. (3)当时, 令, 则直线:与曲线没有公共点, 等价于方程在上没有实数解. 假设,此时,, 又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故. 又时,,知方程在上没有实数解. 所以的最大值为. 解法二: (1)(2)同解法一. (3)当时,. 直线:与曲线没有公共点, 等价于关于的方程在上没有实数解,即关于的方程: (*) 在上没有实数解. ①当时,方程(*)可化为,在上没有实数解. ②当时,方程(*)化为. 令,则有. 令,得, 当变化时,的变化情况如下表:                   减     增   当时,,同时当趋于时,趋于, 从而的取值范围为. 所以当时,方程(*)无实数解, 解得的取值范围是. 综上,得的最大值为.
复制答案
考点分析:
相关试题推荐

已知函数y=fx),若存在x0,使得fx0=x0,则称x0是函数y=fx)的一个不动点,设二次函数fx=ax2+b+1x+b-2

)当a=2b=1时,求函数fx)的不动点;

)若对于任意实数b,函数fx)恒有两个不同的不动点,求实数a的取值范围;

)在()的条件下,若函数y=fx)的图象上AB两点的横坐标是函数fx)的不动点,且直线是线段AB的垂直平分线,求实数b的取值范围.

 

查看答案

在平面直角坐标系xoy中,直线,设圆C的半径为1,圆心在.

(1)若圆心C也在直线上,①求圆C的方程;

②过点作圆C的切线,求切线的方程;

(2)若圆在直线截得的弦长为,求圆C的方程.

 

查看答案

在锐角中角ABC的对边分别为abc,且.

(1)求角A的大小;

(2)求函数的值域.

 

查看答案

设函数的定义域为,若存在常数,使对一切实数均成立,则称为“条件约束函数”. 现给出下列函数:

是定义在实数集上的奇函数,且对一切均有.

其中是“条件约束函数”的序号是__________(写出符合条件的全部序号).

 

查看答案

已知是椭圆和双曲线的公共焦点,是他们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为___.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.