已知过抛物线()的焦点且垂直于x轴的弦长度为2,则实数的值为( )
A.4 B.2 C.1 D.3
设正整数数列满足.
(1)若,请写出所有可能的的取值;
(2)求证:中一定有一项的值为1或3;
(3)若正整数m满足当时,中存在一项值为1,则称m为“归一数”,是否存在正整数m,使得m与都不是“归一数”?若存在,请求出m的最小值;若不存在,请说明理由.
已知椭圆的焦点在x轴上,一个顶点为,离心率为,过椭圆的右焦点F的直线l与坐标轴不垂直,且交椭圆于A,B两点.
求椭圆的方程;
设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C,B,N三点共线?若存在,求出定点的坐标;若不存在,说明理由;
设,是线段为坐标原点上的一个动点,且,求m的取值范围.
已知函数(为自然对数的底数)
(1)若曲线在点处的切线平行于轴,求的值;
(2)求函数的极值;
(3)当时,若直线与曲线没有公共点,求的最大值.
已知函数y=f(x),若存在x0,使得f(x0)=x0,则称x0是函数y=f(x)的一个不动点,设二次函数f(x)=ax2+(b+1)x+b-2
(Ⅰ)当a=2,b=1时,求函数f(x)的不动点;
(Ⅱ)若对于任意实数b,函数f(x)恒有两个不同的不动点,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,若函数y=f(x)的图象上A,B两点的横坐标是函数f(x)的不动点,且直线是线段AB的垂直平分线,求实数b的取值范围.
在平面直角坐标系xoy中,直线,,设圆C的半径为1,圆心在上.
(1)若圆心C也在直线上,①求圆C的方程;
②过点作圆C的切线,求切线的方程;
(2)若圆在直线截得的弦长为,求圆C的方程.