如图是某市夏季某一天的温度变化曲线,若该曲线近似地满足函数,则下列说法正确的是( )
A.该函数的周期是
B.该函数图象的一条对称轴是直线
C.该函数的解析式是
D.该市这一天中午时天气的温度大约是
电流强度I(安培)随时间t(秒)变化的函数的图象如图所示,则t为(秒)时的电流强度为( )
A.0 B. C. D.
如图为一半径为3m的水轮,水轮圆心O距离水面2 m,已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(m)与时间x(s)满足函数关系y=Asin(ωx+φ)+2,则有()
A.ω=,A=3 B.ω=,A=3
C.ω=,A=5 D.ω=,A=5
在两个弹簧上各有一个质量分别为和的小球做上下自由振动,已知它们在时间离开平衡位置的位移和分别由下列两式确定:,.当时,与的大小关系是( )
A. B. C. D.不能确定
为了迎接旅游旺季的到来,少林寺设置了一个专门安排旅客住宿的客栈,寺庙的工作人员发现为游客准备的食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会呈现周期性的变化,并且有以下规律:
①每年相同的月份,入住客栈的游客人数基本相同;
②入住客栈的游客人数在月份最少,在月份最多,相差约人;
③月份入住客栈的游客约为人,随后逐月增加直到月份达到最多.
(1)试用一个正弦型三角函数描述一年中入住客栈的游客人数与月份之间的关系;
(2)请问哪几个月份要准备份以上的食物?
下表是某地某年月平均气温(华氏度):
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
平均气温 | 21.4 | 26.0 | 36.0 | 48.8 | 59.1 | 68.6 | 73.0 | 71.9 | 64.7 | 53.5 | 39.8 | 27.7 |
以月份为x轴(月份),以平均气温为y轴.
(1)用正弦曲线去拟合这些数据;
(2)估计这个正弦曲线的周期T和振幅A;
(3)下面三个函数模型中,哪一个最适合这些数据?
①;②;③.