已知,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.即不充分也不必要条件
方程表示的曲线是( )
A.一条射线 B.双曲线
C.双曲线的左支 D.双曲线的右支
已知函数.
(1)若,讨论函数的单调性;
(2)设,是否存在实数,对任意,,,有恒成立?若存在,求出的范围;若不存在,请说明理由.
设抛物线:的焦点为,准线为,,以为圆心的圆与相切于点,的纵坐标为,是圆与轴的不同于的一个交点.
(1)求抛物线与圆的方程;
(2)过且斜率为的直线与交于,两点,求的面积.
随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2018年1月~8月促销费用(万元)和产品销量(万件)的具体数据.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用 | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量 | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根据数据可知与具有线性相关关系,请建立与的回归方程(系数精确到0.01);
(2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以(单位:件)表示日销量,,则每位员工每日奖励100元;,则每位员工每日奖励150元,,则每位员工每日奖励200元.现已知该网站6月份日销量服从正态分布,请你计算某位员工当月奖励金额总数大约多少元(当月奖励金额总数精确到百分位).
参考数据:,,其中,分别为第个月的促销费用和产品销量,.
参考公式:①对于一组数据,,…,,其回归方程的斜率和截距的最小二乘估计分别为,;②若随机变量服从正态分布,则,.
如图,为圆的直径,点,在圆上,,矩形和圆所在的平面互相垂直,已知,.
(Ⅰ)求证:平面平面;
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,二面角的大小为.