已知a>0,且a≠1.命题P:函数f(x)=logax在(0,+∞)上为增函数;命题Q:函数g(x)=x2﹣2ax+4有零点.
(1)若命题P,Q满足P真Q假,求实数a的取值范围;
(2)命题S:函数y=f(g(x))在区间[2,+∞)上值恒为正数.若命题S为真命题,求实数a的取值范围.
已知椭圆E:,点A,B分别是椭圆E的左顶点和上顶点,直线AB与圆C:x2+y2=c2相离,其中c是椭圆的半焦距,P是直线AB上一动点,过点P作圆C的两条切线,切点分别为M,N,若存在点P使得△PMN是等腰直角三角形,则椭圆离心率平方e2的取值范围是_____.
四边形ABCD的各个顶点依次位于抛物线y=x2上,∠BAD=60°,对角线AC平行x轴,且AC平分∠BAD,若,则ABCD的面积为_____.
在四面体ABCD中,△ABD和△BCD均为等边三角形,AB=2,,则二面角B﹣AD﹣C的余弦值为_____.
若动点P到点F(0,1)的距离比它到直线y=﹣2的距离少1,则动点P的轨迹C的方程为_____,若过点(2,1)作该曲线C的切线l,则切线l的方程为_____
已知向量,,是空间的一组单位正交基底,向量,,是空间的另一组基底,若向量在基底,,下的坐标为(2,1,3),p在基底,,下的坐标为(x,y,z),则x﹣y=_____,z=_____.