已知抛物线C:x2=2py(p>0)的焦点到直线l:2x﹣y﹣1=0的距离为.
(1)求抛物线的方程;
(2)过点P(0,t)(t>0)的直线l与抛物线C交于A,B两点,交x轴于点Q,若抛物线C上总存在点M(异于原点O),使得∠PMQ=∠AMB=90°,求实数t的取值范围.
如图,△ABC为正三角形,且BC=CD=2,CD⊥BC,将△ABC沿BC翻折.
(1)当AD=2时,求证:平面ABD⊥平面BCD;
(2)若点A的射影在△BCD内,且直线AB与平面ACD所成角为60°,求AD的长.
如图,已知椭圆,过动点M(0,m)的直线交x轴于点N,交椭圆C于A,P(其中P在第一象限,N在椭圆内),且M是线段PN的中点,点P关于x轴的对称点为Q,延长QM交C于点B,记直线PM,QM的斜率分别为k1,k2.
(1)当时,求k2的值;
(2)当时,求直线AB斜率的最小值.
如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,,BD=2.
(1)若点E,F分别为线段PD,BC上的中点,求证:EF∥平面PAB;
(2)若平面PBD⊥平面ABCD,且PD⊥PB,PD=PB,求平面PAB与平面PBC所成的锐二面角的余弦值.
已知a>0,且a≠1.命题P:函数f(x)=logax在(0,+∞)上为增函数;命题Q:函数g(x)=x2﹣2ax+4有零点.
(1)若命题P,Q满足P真Q假,求实数a的取值范围;
(2)命题S:函数y=f(g(x))在区间[2,+∞)上值恒为正数.若命题S为真命题,求实数a的取值范围.
已知椭圆E:,点A,B分别是椭圆E的左顶点和上顶点,直线AB与圆C:x2+y2=c2相离,其中c是椭圆的半焦距,P是直线AB上一动点,过点P作圆C的两条切线,切点分别为M,N,若存在点P使得△PMN是等腰直角三角形,则椭圆离心率平方e2的取值范围是_____.