在如图所示的三棱柱中,底面ABC,.
(1)若,证明:;
(2)若底面ABC为正三角形,求点到平面的距离.
如图,在四棱锥中,底面为正方形,底面,,为线段的中点.
(1)若为线段上的动点,证明:平面平面;
(2)若为线段,,上的动点(不含,),,三棱锥的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.
如图,在正方体中,,分别是棱,的中点,,分别为棱,上一点,,且平面.
(1)证明:为的中点.
(2)若四棱锥的体积为,求正方体的表面积.
如图所示,六氟化硫的分子是一个正八面体结构,其中6个氟原子恰好在正八面体的顶点上,而硫原子恰好是正八面体的中心.若把该分子放入一个球内,则这个球的体积与六氟化硫分子体积之比的最小值为________.
如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现,圆柱的表面积与球的表面积之比为_______.
已知正四棱柱的每个顶点都在球的球面上,若球的表面积为,则该四棱柱的侧面积的最大值为________.