满分5 > 高中数学试题 >

在平面直角坐标系中,已知椭圆:()的离心率且椭圆上的点到点的距离的最大值为3. ...

在平面直角坐标系中,已知椭圆)的离心率且椭圆上的点到点的距离的最大值为3.

)求椭圆的方程;

)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.

 

(1);(2)存在,M的坐标为、、、,最大值为. 【解析】 试题(1)离心率,得到,即此时椭圆方程为,设椭圆上的点为P, 两点间的距离等于3,可得到b=1,所以可求得椭圆方程;(2)在解析几何中,三角形的面积公式通常有两种计算方式,,,本题由于没有给出角度的关系,所以采用第一种方法.通过联立方程即可得到M的坐标. 试题解析:(Ⅰ)因为,所以,于是. 设椭圆上任一点,椭圆方程为,,= ①当,即时,(此时舍去; ②当即时, 综上椭圆C的方程为. (Ⅱ)圆心到直线的距离为,弦长,所以的面积为 点, 当时,由得 综上所述,椭圆上存在四个点、、、,使得直线与圆相交于不同的两点、,且的面积最大,且最大值为.
复制答案
考点分析:
相关试题推荐

平面直角坐标系中,椭圆C的离心率是,抛物线E的焦点FC的一个顶点.

)求椭圆C的方程;

)设PE上的动点,且位于第一象限,E在点P处的切线C交与不同的两点AB,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M

i)求证:点M在定直线上;

ii)直线y轴交于点G,记的面积为的面积为,求的最大值及取得最大值时点P的坐标.

 

查看答案

已知曲线Cy=D为直线y=上的动点,过DC的两条切线,切点分别为AB.

1)证明:直线AB过定点:

2)若以E(0)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.

 

查看答案

如图,是抛物线的焦点,过点且与坐标轴不垂直的直线交抛物线于两点,交抛物线的准线于点,其中.过点轴的垂线交抛物线于点,直线交抛物线于点.

1)求的值;

2)求四边形的面积的最小值.

 

查看答案

已知椭圆的离心率为,焦距为,与抛物线有公共焦点.

1)求椭圆C1与抛物线的方程;

2)已知直线是圆的一条切线,与椭圆C1交于两点,若直线斜率存在且不为,在椭圆C1上存在点,使,其中为坐标原点,求实数λ的取值范围.

 

查看答案

已知离心率的椭圆的一个焦点为,.

(Ⅰ)求椭圆的方程;

(Ⅱ)设过原点且与坐标轴不垂直的直线与曲线交于两点,且点,求面积的最大值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.