已知函数
(1)解不等式;
(2)设函数的最小值为,实数满足,,,求证:.
在平面直角坐标系中,直线的参数方程为(为参数),圆的方程为.以原点为极点,轴正半轴为极轴建立极坐标系.
(1)求直线的普通方程及圆的极坐标方程;
(2)若直线与圆交于两点,求的值.
已知函数.
(1)当时,求函数的极小值;
(2)若对任意的,函数的图像恒在轴上方,求实数的取值范围.
记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆,以椭圆E的焦点为顶点作相似椭圆M.
(1)求椭圆M的方程;
(2)设直线l与椭圆交于两点,且与椭圆仅有一个公共点,试判断的面积是否为定值(为坐标原点)?若是,求出该定值;若不是,请说明理由.
如图,在正三棱柱中,,,分别为,的中点.
(Ⅰ)求证:平面;
(Ⅱ)求三棱锥的体积.
据气象局统计,某市2019年从1月1日至1月30日这30天里有26天出现雾霾天气.国际上通常用环境空气质量指数(AQI)来描述污染状况,下表是某气象观测点记录的连续4天里,该市AQI指数与当天的空气水平可见度的情况.
AQI指数 | 900 | 700 | 300 | 100 |
空气水平可见度 | 0.5 | 3.5 | 6.5 | 9.5 |
(1)设,根据表中的数据,求出关于的回归方程;
(2)若某天该市AQT指数,那么当天空气水平可见度大约为多少?
附:参考数据:,.
参考公式:线性回归力程中,,,其中为样本平均数.