已知集合,,则()
A. B.或}
C. D.或}
已知函数.
(1)解关于的不等式;
(2)设实数,且函数的最小值为,求证:.
已知曲线的参数方程为(为参数),以直角坐标系原点为极点,轴正半轴为极轴建立极坐标系.
(1)求曲线的普通方程;
(2)若直线的极坐标方程为,求直线被曲线截得的弦长.
已知函数.
(1)若,试判断函数的零点个数;
(2)若函数在上为增函数,求整数的最大值.
(可能要用到的数据:,,)
如图所示,已知椭圆:的长轴为,过点的直线与轴垂直,椭圆上一点与椭圆的长轴的两个端点构成的三角形的最大面积为2,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2) 设是椭圆上异于,的任意一点,连接并延长交直线于点,点为的中点,试判断直线与椭圆的位置关系,并证明你的结论.
为了解某地区某种产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如下表:
(1)求关于的线性回归方程;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润取到最大值?(保留两位小数)
参考公式: ,