已知椭圆:的左右顶点分别为,,点是椭圆上异于、的任意一点,设直线,的斜率分别为、,且,椭圆的焦距长为4.
(1)求椭圆的标准方程;
(2)过右焦点的直线交椭圆于、两点,分别记,的面积为、,求的最大值.
已知某校甲、乙、丙三个兴趣小组的学生人数分别为36,24,24.现采用分层抽样的方法从中抽取7人,进行睡眠质量的调查.
(1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?
(2)若抽出的7人中有3人睡眠不足,4人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用表示抽取的3人中睡眠充足的学生人数,求随机变量的分布列与数学期望.
设是等差数列,是等比数列,公比大于0,已知,,.
(1)求和的通项公式;
(2)记,,证明:,.
如图,在四棱锥中,底面为正方形,侧面为正三角形,侧面底面,为的中点.
(1)求证:平面;
(2)求二面角的正弦值.
如图,棱长为1的正方体木块经过适当切割,得到棱数为12的正八面体(正多面体是由全等的正多边形围成的多面体).已知面平行于正方体的下底面,且该正八面体的各顶点均在正方体的面上,若在侧面内,且该正八面体的体积为,则该正八面体的棱长为______,点到棱的距离为______.
在圆内接四边形中,,,,,则的面积为______.