已知首项为的等比数列的前项和为,且,,成等差数列.
(1)求数列的通项公式;
(2)对于数列,若存在一个区间,均有,则称为数列的“容值区间”.设,试求数列的“容值区间”长度的最小值.
如图,在直棱柱中,,,,D是BC的中点,点E在棱上运动.
(1)证明:;
(2)当异面直线AC,所成的角为时,求三棱锥的体积.
某校需从甲、乙两名学生中选一人参加物理竞赛,这两名学生最近5次的物理竞赛模拟成绩如下表:
| 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
学生甲的成绩(分) | 80 | 85 | 71 | 92 | 87 |
学生乙的成绩(分) | 90 | 76 | 75 | 92 | 82 |
(1)根据成绩的稳定性,现从甲、乙两名学生中选出一人参加物理竞赛,你认为选谁比较合适?
(2)若物理竞赛分为初赛和复赛,在初赛中有如下两种答题方案:方案1:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰;方案2:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被淘汰.若学生乙只会5道备选题中的3道,则学生乙选择哪种答题方案进入复赛的可能性更大?
已知,若对任意,不等式恒成立,则实数的取值范围是______.
在中,角,,的对边分别为,,,若,,且,则的面积为______.
已知三条侧棱两两垂直的正三棱锥的俯视图如图所示,那么此三棱锥的体积是______.