已知数列{an}是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N*,总有b1b2b3…bn﹣1bn=an+2成立.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=(﹣1)n,求数列{cn}的前n项和Tn.
在平行四边形ABCD中,AB=1,AD,且∠BAD=45°,以BD为折线,把△ABD折起,使AB⊥DC,连接AC,得到三棱锥A﹣BCD.
(1)求证:平面ABD⊥平面BCD;
(2)求二面角B﹣AC﹣D的大小.
△ABC的内角的对边分别为,已知△ABC的面积为
(1)求;
(2)若求△ABC的周长.
函数y=x2+ax+b的图象与坐标轴交于三个不同的点A、B、C,已知△ABC的外心在直线y=x上,求a+b的值.
若点A(x,y)满足C:(x+3)2+(y+4)225,点B是直线3x+4y=12上的动点,则对定点P(6,1)而言,||的最小值为_____.
点M是棱长为2的正方体ABCD﹣A1B1C1D1的棱切球(切于正方体各条棱的球)上的一点,点N是△ACD1的外接圆上一点,则线段MN长度的取值范围是_____.