已知函数,.
(1)当时,求不等式的解集;
(2)若的解集包含,求实数的取值范围.
在平面直角坐标系中曲线的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)分别求出曲线的普通方程和曲线的直角坐标方程;
(2)若分别是曲线和上的动点,求的最小值.
椭圆的左、右顶点分别为,上、下顶点分别为,左、右焦点分别为,,离心率为.
(1)求椭圆的方程;
(2)过右焦点的直线与椭圆相交于两点,试探究在轴上是否存在定点,使得可为定值?若存在,求出点的坐标,若不存在,请说明理由?
已知,.
(1)当时,求的单调区间;
(2)若当时,不等式在上恒成立,求实数的取值范围.
已知各项均为正数的数列的前项和为,若,.
(1)求数列的通项公式.
(2)若,求数列的前项和.
一个不透明的盒子中关有蝴蝶、蜜蜂和蜻蜓三种昆虫共11只,现在盒子上开一小孔,每次只能飞出1只昆虫(假设任意1只昆虫等可能地飞出).若有2只昆虫先后任意飞出(不考虑顺序),则飞出的是蝴蝶或蜻蜓的概率是.
(1)求盒子中蜜蜂有几只;
(2)若从盒子中先后任意飞出3只昆虫(不考虑顺序),记飞出蜜蜂的只数为X,求随机变量X的分布列与数学期望E(X).