已知集合,,则( )
A. B. C. D.
现对一块边长8米的正方形场地ABCD进行改造,点E为线段BC的中点,点F在线段CD或AD上(异于A,C),设(米),的面积记为(平方米),其余部分面积记为(平方米).
(1)当(米)时,求的值;
(2)求函数的最大值;
(3)该场地中部分改造费用为(万元),其余部分改造费用为(万元),记总的改造费用为W(万元),求W取最小值时x的值.
已知二次函数.
(1)若在区间上单调递增,求实数k的取值范围;
(2)若,当时,求的最大值;
(3)若在上恒成立,求实数k的取值范围.
已知函数,.
(1)若不等式的解集为,求a的值;
(2)若,讨论关于x不等式的解集.
已知函数.
(1)求的值;
(2)若函数,且,满足下列条件:①为偶函数;②且使得;③且恒过点.写出一个符合题意的函数,并说明理由.
已知函数为定义在R上的奇函数,当时,.
(1)求的值;
(2)用函数单调性的定义证明:函数在上单调递增;
(3)求函数在上的解析式.