如图,几何体AMDCNB是由两个完全相同的四棱锥构成的几何体,这两个四棱锥的底面ABCD为正方形,,平面平面ABCD.
(1)证明:平面平面MDC.
(2)若,求二面角的余弦值.
如图,在正四棱锥中,O为顶点S在底面ABCD内的投影,P为侧棱SD的中点,且.
(1)证明:平面PAC.
(2)求直线BC与平面PAC的所成角的大小.
已知对于,函数有意义,关于k的不等式成立.
(1)若为假命题,求k的取值范围;
(2)若p是q的必要不充分条件,求m的取值范围.
已知椭圆C的中心在原点,焦点在x轴上,且长轴长为12,离心率为.
(1)求椭圆C的标准方程;
(2)已知双曲线E过点,且双曲线E的焦点与椭圆C的焦点重合,求双曲线E的标准方程.
双曲线的左、右焦点分别为、,点在上且,为坐标原点,则_______.
在正方体中,,分别为,的中点,为侧面的中心,则异面直线与所成角的余弦值为______.