已知椭圆的离心率,且圆经过椭圆C的上、下顶点.
(1)求椭圆C的方程;
(2)若直线l与椭圆C相切,且与椭圆相交于M,N两点,证明:的面积为定值(O为坐标原点).
已知抛物线C的顶点为坐标原点O,对称轴为x轴,其准线过点.
(1)求抛物线C的方程;
(2)过抛物线焦点F作直线l,使得抛物线C上恰有三个点到直线l的距离都为,求直线l的方程.
如图,几何体AMDCNB是由两个完全相同的四棱锥构成的几何体,这两个四棱锥的底面ABCD为正方形,,平面平面ABCD.
(1)证明:平面平面MDC.
(2)若,求二面角的余弦值.
如图,在正四棱锥中,O为顶点S在底面ABCD内的投影,P为侧棱SD的中点,且.
(1)证明:平面PAC.
(2)求直线BC与平面PAC的所成角的大小.
已知对于,函数有意义,关于k的不等式成立.
(1)若为假命题,求k的取值范围;
(2)若p是q的必要不充分条件,求m的取值范围.
已知椭圆C的中心在原点,焦点在x轴上,且长轴长为12,离心率为.
(1)求椭圆C的标准方程;
(2)已知双曲线E过点,且双曲线E的焦点与椭圆C的焦点重合,求双曲线E的标准方程.