【解析】
求出函数在区间上的值域为,由题意可知,由,可得出,由题意知,函数在区间上的值域包含,然后对分、、三种情况分类讨论,求出函数在区间上的值域,可得出关于实数的不等式(组),解出即可.
由于函数在上的减函数,则,即,
所以,函数在区间上的值域为.
对于函数,内层函数为,外层函数为.
令,得.
由题意可知,函数在区间上的值域包含.
函数的图象开口向上,对称轴为直线.
(i)当时,函数在区间上单调递减,在区间上单调递增,则,,即,
此时,函数在区间上的值域为,
由题意可得,解得,此时,;
(ii)当时,函数在区间上单调递减,在区间上单调递增,则,,即,
此时,函数在区间上的值域为,
由题意可得,解得或,此时;
(iii)当时,函数在区间上单调递减,则,,则函数在区间上的值域为,
由题意可得,解得,此时,.
综上所述,实数的取值范围是.