已知平面直角坐标系中,直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)求直线l的普通方程以及曲线C的参数方程;
(2)过曲线C上任意一点E作与直线l的夹角为的直线,交l于点F,求的最小值.
已知椭圆:的左、右焦点分别是,,点,若的内切圆的半径与外接圆的半径的比是.
(1)求椭圆的方程;
(2)设为椭圆的右顶点,设圆:,不与轴垂直的直线与交于、两点,原点到直线的距离为,线段、分别与椭圆交于、,,垂足为.设,,的面积为,的面积为.
①试确定与的关系式;、
②求的最大值.
已知函数, .
(1)求函数的单调区间;
(2)当时,对任意的,存在,使得成立,试确定实数m的取值范围.
设甲、乙两位同学上学期间,每天7:10之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(1)用表示甲同学上学期间的每周五天中7:10之前到校的天数,求随机变量的分布列和数学期望;
(2)记“上学期间的某周的五天中,甲同学在7:10之前到校的天数比乙同学在7:10之前到校的天数恰好多3天”为事件,求事件发生的概率.
如图,是平面四边形的一条对角线,已知,且.
(1)求证:为等腰直角三角形;
(2)若,,求四边形面积的最大值.
已知等比数列的前n项和为,且当时,是与2m的等差中项为实数.
(1)求m的值及数列的通项公式;
(2)令,是否存在正整数k,使得对任意正整数n均成立?若存在,求出k的最大值;若不存在,说明理由.