已知函数.
(1)求函数的单调递增区间;
(2)将函数的图象上每一点的横坐标伸长原来的两倍,纵坐标保持不变,得到函数的图象,若方程在上有两个不相等的实数解,,求实数m的取值范围,并求的值.
重庆朝天门批发市场某服装店试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于成本的40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数,且时,;时,.
(1)求一次函数的表达式;
(2)若该服装店获得利润为W元,试写出利润与销售单价x之间的关系式;销售单价定为多少元时,服装店可获得最大利润,最大利润是多少元?
设函数(且),又.
(1)求实数a的值及的定义域;
(2)求的最大值及取得最大值时相应x的值.
如图所示,A,B是单位圆O上的点,且B点在第二象限,C点是圆与x轴正半轴的交点,A点的坐标为,为正三角形,记.
(1)求;
(2)求.
已知
(1)化简;
(2)若,,且,均为锐角,求角的值.
若函数,对任意实数t都有,且,则实数k的值为________.