满分5 > 高中数学试题 >

设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校...

设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;

(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.

 

(Ⅰ)见解析;(Ⅱ) 【解析】 (Ⅰ)由题意可知分布列为二项分布,结合二项分布的公式求得概率可得分布列,然后利用二项分布的期望公式求解数学期望即可; (Ⅱ)由题意结合独立事件概率公式计算可得满足题意的概率值. (Ⅰ)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为, 故,从面. 所以,随机变量的分布列为: 0 1 2 3 随机变量的数学期望. (Ⅱ)设乙同学上学期间的三天中7:30之前到校的天数为,则. 且. 由题意知事件与互斥, 且事件与,事件与均相互独立, 从而由(Ⅰ)知: .
复制答案
考点分析:
相关试题推荐

在平面直角坐标系xOy中,设点集.从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离.

1)当n=1时,求X的概率分布;

2)对给定的正整数nn≥3),求概率PXn)(用n表示).

 

查看答案

甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为主主客客主客主.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率是____________

 

查看答案

,则随机变量的分布列是:

则当内增大时(  )

A. 增大 B. 减小

C. 先增大后减小 D. 先减小后增大

 

查看答案

某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,则

A.0.7 B.0.6 C.0.4 D.0.3

 

查看答案

已知函数恰有两个极值点.

(1)求实数的取值范围;

(2)求证:

(3)求证: (其中为自然对数的底数).

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.