某公司的一次招聘中,应聘者都要经过三个独立项目
,
,
的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过
,
,
每个项目测试的概率都是
.
(1)求甲恰好通过两个项目测试的概率;
(2)设甲、乙、丙三人中被录用的人数为
,求
的概率分布和数学期望.
如图是一旅游景区供游客行走的路线图,假设从进口
开始到出口
,每遇到一个岔路口,每位游客选择其中一条道路行进是等可能的.现有甲、乙、丙、丁共
名游客结伴到旅游景区游玩,他们从进口
的岔路口就开始选择道路自行游玩,并按箭头所指路线行走,最后到出口
集中,设点
是其中的一个交叉路口点.
(1)求甲经过点
的概率;
(2)设这
名游客中恰有
名游客都是经过点
,求随机变量
的概率分布和数学期望.

甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局.
(1)若在一局中甲先摸,求甲在该局获胜的概率;
(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X的概率分布及数学期望.
本着健康、低碳的生活理念,租用公共自行车骑行的人越来越多.某种公共自行车的租用收费标准为:每次租车不超过1小时免费,超过1小时的部分每小时收费2元(不足1小时的部分按1小时计算).甲、乙两人相互独立来租车,每人各租1辆且租用1次.设甲、乙不超过1小时还车的概率分别为
和
;1小时以上且不超过2小时还车的概率分别为
和
;两人租车时间都不会超过3小时.
(1) 求甲、乙两人所付租车费用相同的概率;
(2) 记甲、乙两人所付的租车费用之和为随机变量
,求
的分布列和数学期望
.
盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.
(1)从盒中一次随机抽出2个球,求取出的2个球的颜色相同的概率;
(2)从盒中一次随机抽出4个球,其中红球、黄球、绿球的个数分别为
,随机变量
表示
的最大数,求
的概率分布和数学期望
.
已知一个口袋有m个白球,n个黑球(m,n
,n
2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,……,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2,3,……,m+n).
![]()
(1)试求编号为2的抽屉内放的是黑球的概率p;
(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x的数学期望,证明 ![]()
