某公司有四辆汽车,其中车的车牌尾号为0,两辆车的车牌尾号为6,车的车牌尾号为5,已知在非限行日,每辆车都有可能出车或不出车.已知两辆汽车每天出车的概率为,两辆汽车每天出车的概率为,且四辆汽车是否出车是相互独立的.
该公司所在地区汽车限行规定如下:
(1)求该公司在星期四至少有2辆汽车出车的概率;
(2)设表示该公司在星期一和星期二两天出车的车辆数之和,求的分布列和数学期望.
从批量较大的产品中随机取出10件产品进行质量检测,若这批产品的不合格率为0.05,随机变量表示这10件产品中的不合格产品的件数.
(1)问:这10件产品中“恰好有2件不合格的概率”和“恰好有3件不合格的概率”哪个大?请说明理由;
(2)求随机变量的数学期望.
“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.
(1)求X为“回文数”的概率;
(2)设随机变量表示X,Y两数中“回文数”的个数,求的概率分布和数学期望.
从批量较大的产品中随机取出10件产品进行质量检测,若这批产品的不合格率为0.05,随机变量表示这10件产品中的不合格产品的件数.
(1)问:这10件产品中“恰好有2件不合格的概率”和“恰好有3件不合格的概率”哪个大?请说明理由;
(2)求随机变量的数学期望.
已知知正四棱锥S-ABCD的底面边长和高均为2,从其五个顶点中任取三个,记这三个顶点围成的三角形的面积为.
(1)求概率P(=2);
(2)求的分布列和数学期望.
某公司的一次招聘中,应聘者都要经过三个独立项目,,的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过,,每个项目测试的概率都是.
(1)求甲恰好通过两个项目测试的概率;
(2)设甲、乙、丙三人中被录用的人数为,求的概率分布和数学期望.