满分5 > 高中数学试题 >

已知函数 (1)当时,求不等式的解集; (2)若,且对任意,恒成立,求的最小值....

已知函数

(1)当时,求不等式的解集;

(2)若,且对任意恒成立,求的最小值.

 

(1);(2)1. 【解析】 (1) 当时,求出分段函数,然后可以选择数形结合求解或选择解不等式组; (2)当时,化简分段函数得 可以得到函数在上单调递减,在上单调递减,在上单调递增,然后利用最值分析法,即可求出参数的最小值. (1)当时,,即, 解法一:作函数的图象,它与直线的交点为, 所以,的解集的解集为. 解法2:原不等式等价于 或 或, 解得:或无解或, 所以,的解集为. (2). 则 所以函数在上单调递减,在上单调递减,在上单调递增. 所以当时,取得最小值,. 因为对,恒成立, 所以. 又因为, 所以, 解得 (不合题意). 所以的最小值为1.
复制答案
考点分析:
相关试题推荐

在平面直角坐标系中,曲线的参数方程为为参数),已知点,点是曲线上任意一点,点的中点,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(1)求点的轨迹的极坐标方程;

(2)已知直线与曲线交于两点,若,求的值.

 

查看答案

已知函数,其中为自然对数的底数.

(1)当时,证明:对

(2)若函数上存在极值,求实数的取值范围。

 

查看答案

已知椭圆的离心率为M是椭圆C的上顶点,,F2是椭圆C的焦点,的周长是6.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)过动点P(1,t)作直线交椭圆CAB两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标.

 

查看答案

随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.

(Ⅰ)求a的值;

(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;

(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).

 

查看答案

如图,已知四边形是直角梯形,为线段的中点,平面是线段的中点.

1)求证:∥平面

2)求直线与平面所成的角的大小;

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.