公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然前于他10米.当阿基里斯跑完下一个10米时,乌龟仍然前于他1米……,所以,阿基里斯永远追不上乌龟,按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为( )
A.米 B.米
C.米 D.米
若向量与满足,且,,则向量在方向上的投影为()
A. B. C.-1 D.
已知复数,命题:复数的虚部为,命题:复数的模为1.下列命题为真命题的是( )
A. B.
C. D.
已知集合,,且,则的可取值组成的集合为( )
A. B. C. D.
已知函数
(1)当时,求不等式的解集;
(2)若,且对任意,恒成立,求的最小值.
在平面直角坐标系中,曲线的参数方程为(为参数),已知点,点是曲线上任意一点,点为的中点,以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)求点的轨迹的极坐标方程;
(2)已知直线:与曲线交于两点,若,求的值.