满分5 > 高中数学试题 >

选修4-4:坐标系与参数方程:在直角坐标系中,直线的参数方程为 (为参数,).在...

选修44:坐标系与参数方程:在直角坐标系中,直线的参数方程为 (为参数,).在以为极点,轴正半轴为极轴的极坐标系中,曲线.

(1)时,求的交点的极坐标;

(2)直线与曲线交于两点,且两点对应的参数互为相反数,求的值.

 

(1),(2) 【解析】 试题(1)曲线的直角坐标方程为,直线的普通方程为,联立解出方程组即可;(2)把直线的参数方程代入曲线,根据结合韦达定理可得结果. 试题解析:(1)由,可得, 所以,即, \当时,直线的参数方程(为参数),化为直角坐标方程为, 联立解得交点为或, 化为极坐标为, (2)把直线的参数方程代入曲线,得, 可知,, 所以.  
复制答案
考点分析:
相关试题推荐

在平面直角坐标系中,已知点,动点满足直线的斜率之积为.记点的轨迹为曲线.

(1)求的方程,并说明是什么曲线;

(2)是曲线上的动点,且直线过点,问在轴上是否存在定点,使得?若存在,请求出定点的坐标;若不存在,请说明理由.

 

查看答案

已知函数.

(1)当时,求函数的单调区间及极值;

(2)时,求证:.

 

查看答案

“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:),经统计,树苗的高度均在区间内,将其按分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于的为优质树苗.

(1)求图中的值;

(2)已知所抽取的这120株树苗来自于两个试验区,部分数据如下列联表:

 

试验区

试验区

合计

优质树苗

 

20

 

非优质树苗

60

 

 

合计

 

 

 

 

将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与两个试验区有关系,并说明理由;

(3)通过用分层抽样方法从试验区被选中的树苗中抽取5株,若从这5株树苗中随机抽取2株,求优质树苗和非优质树苗各有1株的概率.

附:参考公式与参考数据:

其中

0.010

0.005

0.001

6.635

7.879

10.828

 

 

 

查看答案

已知各项均为正数的数列的前项和满足.

(1)证明:数列是等差数列,并求其通项公式;

(2),求数列的前项和.

 

查看答案

如图,在四棱锥中,底面是矩形,是棱的中点.

(1)求证:平面

(2)在棱上是否存在点,使得平面?并说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.