已知点An(n,an)为函数y=图象上的点,Bn(n,bn)为函数y=x图象上的点,其中n∈N*,设cn=an-bn,则cn与cn+1的大小关系为______.
设是两个实数,给出下列条件:
①;②;③;④;⑤.
其中能推出:“中至少有一个大于”的条件是____________.
由中可猜想出的第个等式是_____________
已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数叫做等差数列,这个常数叫做该数列的公差.类比等差数列的定义给出“等和数列”的定义:_____________________________________;已知数列是等和数列,且,公和为,那么的值为____________.这个数列的前项和的计算公式为_____________________________________.
请阅读下列材料:若两个正实数a1,a2满足,那么.
证明:构造函数,因为对一切实数x,恒有,所以,从而得,所以.
根据上述证明方法,若n个正实数满足时,你能得到的结论为 .(不必证明)
给出下面类比推理(其中为有理数集,为实数集,为复数集):
①“若,则”类比推出“,则”;
②“若,则复数”类比推出“,则”;
③“,则”类比推出“若,则”;
④“若,则”类比推出“若,则”.
其中类比结论正确的个数为________.